MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. SAE-AISI M3 Class 2 Steel

5082 aluminum belongs to the aluminum alloys classification, while SAE-AISI M3 class 2 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is SAE-AISI M3 class 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 380 to 400
770 to 2210

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1620
Melting Onset (Solidus), °C 560
1570
Specific Heat Capacity, J/kg-K 910
440
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
25
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
12
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1180
110

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 39 to 41
26 to 74
Strength to Weight: Bending, points 43 to 45
22 to 45
Thermal Diffusivity, mm2/s 54
7.2
Thermal Shock Resistance, points 17 to 18
24 to 69

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
1.2 to 1.3
Chromium (Cr), % 0 to 0.15
3.8 to 4.5
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0 to 0.35
75.8 to 82.3
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0.15 to 0.4
Molybdenum (Mo), % 0
4.8 to 6.5
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.2 to 0.45
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
5.0 to 6.8
Vanadium (V), % 0
2.8 to 3.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0