MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. C27200 Brass

5082 aluminum belongs to the aluminum alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 1.1
10 to 50
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Shear Strength, MPa 210 to 230
230 to 320
Tensile Strength: Ultimate (UTS), MPa 380 to 400
370 to 590
Tensile Strength: Yield (Proof), MPa 300 to 340
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 560
870
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
110 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 39 to 41
13 to 20
Strength to Weight: Bending, points 43 to 45
14 to 19
Thermal Diffusivity, mm2/s 54
37
Thermal Shock Resistance, points 17 to 18
12 to 20

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
62 to 65
Iron (Fe), % 0 to 0.35
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
34.6 to 38
Residuals, % 0
0 to 0.3