MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. C38500 Bronze

5082 aluminum belongs to the aluminum alloys classification, while C38500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is C38500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 1.1
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
37
Shear Strength, MPa 210 to 230
230
Tensile Strength: Ultimate (UTS), MPa 380 to 400
370
Tensile Strength: Yield (Proof), MPa 300 to 340
130

Thermal Properties

Latent Heat of Fusion, J/g 400
160
Maximum Temperature: Mechanical, °C 180
110
Melting Completion (Liquidus), °C 640
890
Melting Onset (Solidus), °C 560
880
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
48
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
78
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 39 to 41
13
Strength to Weight: Bending, points 43 to 45
14
Thermal Diffusivity, mm2/s 54
40
Thermal Shock Resistance, points 17 to 18
12

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
55 to 59
Iron (Fe), % 0 to 0.35
0 to 0.35
Lead (Pb), % 0
2.5 to 3.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0
Silicon (Si), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
36.7 to 42.5
Residuals, % 0
0 to 0.5