MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. C43500 Brass

5082 aluminum belongs to the aluminum alloys classification, while C43500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is C43500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
110
Elongation at Break, % 1.1
8.5 to 46
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
42
Shear Strength, MPa 210 to 230
220 to 310
Tensile Strength: Ultimate (UTS), MPa 380 to 400
320 to 530
Tensile Strength: Yield (Proof), MPa 300 to 340
120 to 480

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 560
970
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
30

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
44 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
65 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 39 to 41
10 to 17
Strength to Weight: Bending, points 43 to 45
12 to 17
Thermal Diffusivity, mm2/s 54
37
Thermal Shock Resistance, points 17 to 18
11 to 18

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
79 to 83
Iron (Fe), % 0 to 0.35
0 to 0.050
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0.6 to 1.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
15.4 to 20.4
Residuals, % 0
0 to 0.3