MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. N06210 Nickel

5082 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
220
Elongation at Break, % 1.1
51
Fatigue Strength, MPa 110 to 130
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
85
Shear Strength, MPa 210 to 230
560
Tensile Strength: Ultimate (UTS), MPa 380 to 400
780
Tensile Strength: Yield (Proof), MPa 300 to 340
350

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 560
1510
Specific Heat Capacity, J/kg-K 910
420
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
85
Density, g/cm3 2.7
9.0
Embodied Carbon, kg CO2/kg material 8.9
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
320
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 39 to 41
24
Strength to Weight: Bending, points 43 to 45
21
Thermal Shock Resistance, points 17 to 18
22

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.15
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
0 to 1.0
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0