MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. N08028 Stainless Steel

5082 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
45
Fatigue Strength, MPa 110 to 130
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Shear Strength, MPa 210 to 230
400
Tensile Strength: Ultimate (UTS), MPa 380 to 400
570
Tensile Strength: Yield (Proof), MPa 300 to 340
240

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.9
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
210
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 39 to 41
19
Strength to Weight: Bending, points 43 to 45
19
Thermal Diffusivity, mm2/s 54
3.2
Thermal Shock Resistance, points 17 to 18
12

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.15
26 to 28
Copper (Cu), % 0 to 0.15
0.6 to 1.4
Iron (Fe), % 0 to 0.35
29 to 40.4
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0