MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. S21460 Stainless Steel

5082 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
46
Fatigue Strength, MPa 110 to 130
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 210 to 230
580
Tensile Strength: Ultimate (UTS), MPa 380 to 400
830
Tensile Strength: Yield (Proof), MPa 300 to 340
430

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 560
1330
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.9
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
320
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
30
Strength to Weight: Bending, points 43 to 45
26
Thermal Shock Resistance, points 17 to 18
17

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.15
17 to 19
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
57.3 to 63.7
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0