MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. S21904 Stainless Steel

5082 aluminum belongs to the aluminum alloys classification, while S21904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 1.1
17 to 51
Fatigue Strength, MPa 110 to 130
380 to 550
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 210 to 230
510 to 620
Tensile Strength: Ultimate (UTS), MPa 380 to 400
700 to 1000
Tensile Strength: Yield (Proof), MPa 300 to 340
390 to 910

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
160 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
380 to 2070
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 39 to 41
25 to 36
Strength to Weight: Bending, points 43 to 45
23 to 29
Thermal Diffusivity, mm2/s 54
3.8
Thermal Shock Resistance, points 17 to 18
15 to 21

Alloy Composition

Aluminum (Al), % 93.5 to 96
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.15
19 to 21.5
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
59.5 to 67.4
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0