MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. 2218 Aluminum

Both 5083 aluminum and 2218 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 1.1 to 17
6.8 to 10
Fatigue Strength, MPa 93 to 190
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170 to 220
210 to 250
Tensile Strength: Ultimate (UTS), MPa 290 to 390
330 to 430
Tensile Strength: Yield (Proof), MPa 110 to 340
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 580
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
37
Electrical Conductivity: Equal Weight (Specific), % IACS 96
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.1
Embodied Carbon, kg CO2/kg material 8.9
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
450 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
45
Strength to Weight: Axial, points 29 to 40
30 to 39
Strength to Weight: Bending, points 36 to 44
34 to 41
Thermal Diffusivity, mm2/s 48
52
Thermal Shock Resistance, points 12 to 17
15 to 19

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
88.8 to 93.6
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Copper (Cu), % 0 to 0.1
3.5 to 4.5
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 4.0 to 4.9
1.2 to 1.8
Manganese (Mn), % 0.4 to 1.0
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Silicon (Si), % 0 to 0.4
0 to 0.9
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15