MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. ACI-ASTM CD3MCuN Steel

5083 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD3MCuN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is ACI-ASTM CD3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
29
Fatigue Strength, MPa 93 to 190
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 290 to 390
790
Tensile Strength: Yield (Proof), MPa 110 to 340
500

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Corrosion, °C 65
450
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
3.9
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
200
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
620
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 40
28
Strength to Weight: Bending, points 36 to 44
24
Thermal Diffusivity, mm2/s 48
4.1
Thermal Shock Resistance, points 12 to 17
22

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
24 to 26.7
Copper (Cu), % 0 to 0.1
1.4 to 1.9
Iron (Fe), % 0 to 0.4
58.2 to 65.9
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
2.9 to 3.8
Nickel (Ni), % 0
5.6 to 6.7
Nitrogen (N), % 0
0.22 to 0.33
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0