MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. AWS E307

5083 aluminum belongs to the aluminum alloys classification, while AWS E307 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is AWS E307.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 290 to 390
660

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
3.5
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1170
160

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 40
24
Strength to Weight: Bending, points 36 to 44
22
Thermal Diffusivity, mm2/s 48
4.1
Thermal Shock Resistance, points 12 to 17
17

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.040 to 0.14
Chromium (Cr), % 0.050 to 0.25
18 to 21.5
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.4
59.6 to 69.2
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
3.3 to 4.8
Molybdenum (Mo), % 0
0.5 to 1.5
Nickel (Ni), % 0
9.0 to 10.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0