MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. AWS ER80S-Ni3

5083 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is AWS ER80S-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 17
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 290 to 390
630
Tensile Strength: Yield (Proof), MPa 110 to 340
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.0
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1170
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
160
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
22
Strength to Weight: Bending, points 36 to 44
21
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 0.35
Iron (Fe), % 0 to 0.4
93.2 to 96.6
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.3
Nickel (Ni), % 0
3.0 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5