MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.3542 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.3542 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.3542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
220
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 290 to 390
720

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Corrosion, °C 65
380
Maximum Temperature: Mechanical, °C 190
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 96
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
2.0
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1170
100

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 40
26
Strength to Weight: Bending, points 36 to 44
23
Thermal Diffusivity, mm2/s 48
7.9
Thermal Shock Resistance, points 12 to 17
26

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.6 to 0.7
Chromium (Cr), % 0.050 to 0.25
12.5 to 14.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
82.7 to 87.5
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0