MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.4655 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
23 to 25
Fatigue Strength, MPa 93 to 190
320
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 220
460
Tensile Strength: Ultimate (UTS), MPa 290 to 390
720 to 730
Tensile Strength: Yield (Proof), MPa 110 to 340
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Corrosion, °C 65
440
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 580
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
510 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 40
26
Strength to Weight: Bending, points 36 to 44
23
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 12 to 17
20

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
22 to 24
Copper (Cu), % 0 to 0.1
1.0 to 3.0
Iron (Fe), % 0 to 0.4
63.6 to 73.4
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0