MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.4971 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
240
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 17
34
Fatigue Strength, MPa 93 to 190
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 170 to 220
530
Tensile Strength: Ultimate (UTS), MPa 290 to 390
800
Tensile Strength: Yield (Proof), MPa 110 to 340
340

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Corrosion, °C 65
570
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.9
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
220
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
26
Strength to Weight: Bending, points 36 to 44
23
Thermal Diffusivity, mm2/s 48
3.4
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.050 to 0.25
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
24.3 to 37.1
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0