MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.6554 Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
230 to 280
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 17
17 to 21
Fatigue Strength, MPa 93 to 190
380 to 520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 290 to 390
780 to 930
Tensile Strength: Yield (Proof), MPa 110 to 340
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1170
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
810 to 1650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
27 to 33
Strength to Weight: Bending, points 36 to 44
24 to 27
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 12 to 17
23 to 27

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0.050 to 0.25
0.7 to 0.9
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
94.6 to 97.3
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants