MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.8869 Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.8869 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.8869 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
160
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 17
25
Fatigue Strength, MPa 93 to 190
260
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 220
350
Tensile Strength: Ultimate (UTS), MPa 290 to 390
540
Tensile Strength: Yield (Proof), MPa 110 to 340
360

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
48
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1170
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
120
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
19
Strength to Weight: Bending, points 36 to 44
19
Thermal Diffusivity, mm2/s 48
13
Thermal Shock Resistance, points 12 to 17
16

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0.050 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
96.4 to 100
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.25
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
0 to 0.030
Vanadium (V), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.15
0