MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. CC333G Bronze

5083 aluminum belongs to the aluminum alloys classification, while CC333G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
170
Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 1.1 to 17
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 290 to 390
710
Tensile Strength: Yield (Proof), MPa 110 to 340
310

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 580
1020
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
38
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
3.5
Embodied Energy, MJ/kg 150
56
Embodied Water, L/kg 1170
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
75
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
410
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 29 to 40
24
Strength to Weight: Bending, points 36 to 44
21
Thermal Diffusivity, mm2/s 48
10
Thermal Shock Resistance, points 12 to 17
24

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Chromium (Cr), % 0.050 to 0.25
0 to 0.050
Copper (Cu), % 0 to 0.1
76 to 83
Iron (Fe), % 0 to 0.4
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 4.0 to 4.9
0 to 0.050
Manganese (Mn), % 0.4 to 1.0
0 to 3.0
Nickel (Ni), % 0
3.7 to 6.0
Silicon (Si), % 0 to 0.4
0 to 0.1
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0 to 0.15
0