MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. Nickel 684

5083 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
310
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
11
Fatigue Strength, MPa 93 to 190
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 170 to 220
710
Tensile Strength: Ultimate (UTS), MPa 290 to 390
1190
Tensile Strength: Yield (Proof), MPa 110 to 340
800

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 580
1320
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
120
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
1610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 29 to 40
40
Strength to Weight: Bending, points 36 to 44
30
Thermal Shock Resistance, points 12 to 17
34

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0.050 to 0.25
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.4
0 to 4.0
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
2.5 to 3.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0