MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. SAE-AISI 1020 Steel

5083 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 17
17 to 28
Fatigue Strength, MPa 93 to 190
180 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 220
280
Tensile Strength: Ultimate (UTS), MPa 290 to 390
430 to 460
Tensile Strength: Yield (Proof), MPa 110 to 340
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
11
Electrical Conductivity: Equal Weight (Specific), % IACS 96
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1170
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
150 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
15 to 16
Strength to Weight: Bending, points 36 to 44
16 to 17
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 12 to 17
13 to 14

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
99.08 to 99.52
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0