MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. Type 2 Niobium

5083 aluminum belongs to the aluminum alloys classification, while Type 2 niobium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is Type 2 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
110
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 17
29
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 26
38
Tensile Strength: Ultimate (UTS), MPa 290 to 390
140
Tensile Strength: Yield (Proof), MPa 110 to 340
82

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Specific Heat Capacity, J/kg-K 900
270
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 24
7.3

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.6
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
35
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
32
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 29 to 40
4.6
Strength to Weight: Bending, points 36 to 44
7.1
Thermal Diffusivity, mm2/s 48
23
Thermal Shock Resistance, points 12 to 17
13

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.4
0 to 0.010
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
99.5 to 100
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0 to 0.030
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.15
0