MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. C19400 Copper

5083 aluminum belongs to the aluminum alloys classification, while C19400 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 1.1 to 17
2.3 to 37
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 170 to 220
210 to 300
Tensile Strength: Ultimate (UTS), MPa 290 to 390
310 to 630
Tensile Strength: Yield (Proof), MPa 110 to 340
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 580
1080
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 120
260
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 96
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
41 to 1140
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 29 to 40
9.7 to 20
Strength to Weight: Bending, points 36 to 44
11 to 18
Thermal Diffusivity, mm2/s 48
75
Thermal Shock Resistance, points 12 to 17
11 to 22

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
96.8 to 97.8
Iron (Fe), % 0 to 0.4
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0
Phosphorus (P), % 0
0.015 to 0.15
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0.050 to 0.2
Residuals, % 0
0 to 0.2