MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. C71640 Copper-nickel

5083 aluminum belongs to the aluminum alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
52
Tensile Strength: Ultimate (UTS), MPa 290 to 390
490 to 630
Tensile Strength: Yield (Proof), MPa 110 to 340
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 400
240
Maximum Temperature: Mechanical, °C 190
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 580
1120
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 120
29
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 96
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.9
5.0
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1170
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 50
20
Strength to Weight: Axial, points 29 to 40
15 to 20
Strength to Weight: Bending, points 36 to 44
16 to 18
Thermal Diffusivity, mm2/s 48
8.2
Thermal Shock Resistance, points 12 to 17
16 to 21

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
61.7 to 67.8
Iron (Fe), % 0 to 0.4
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
1.5 to 2.5
Nickel (Ni), % 0
29 to 32
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Residuals, % 0
0 to 0.5