MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. S31727 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
40
Fatigue Strength, MPa 93 to 190
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 220
430
Tensile Strength: Ultimate (UTS), MPa 290 to 390
630
Tensile Strength: Yield (Proof), MPa 110 to 340
270

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 580
1390
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 8.9
4.7
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
200
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
22
Strength to Weight: Bending, points 36 to 44
20
Thermal Shock Resistance, points 12 to 17
14

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
17.5 to 19
Copper (Cu), % 0 to 0.1
2.8 to 4.0
Iron (Fe), % 0 to 0.4
53.7 to 61.3
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0