MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. S35315 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.1 to 17
46
Fatigue Strength, MPa 93 to 190
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 170 to 220
520
Tensile Strength: Ultimate (UTS), MPa 290 to 390
740
Tensile Strength: Yield (Proof), MPa 110 to 340
300

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Corrosion, °C 65
450
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 580
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 96
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.9
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1170
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
270
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 29 to 40
26
Strength to Weight: Bending, points 36 to 44
23
Thermal Diffusivity, mm2/s 48
3.1
Thermal Shock Resistance, points 12 to 17
17

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0.050 to 0.25
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
33.6 to 40.6
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Nickel (Ni), % 0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0