MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. S44735 Stainless Steel

5083 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
220
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 17
21
Fatigue Strength, MPa 93 to 190
300
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 170 to 220
390
Tensile Strength: Ultimate (UTS), MPa 290 to 390
630
Tensile Strength: Yield (Proof), MPa 110 to 340
460

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Corrosion, °C 65
650
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
120
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 29 to 40
23
Strength to Weight: Bending, points 36 to 44
21
Thermal Shock Resistance, points 12 to 17
20

Alloy Composition

Aluminum (Al), % 92.4 to 95.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
28 to 30
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
60.7 to 68.4
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0.2 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0