MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 5019 Aluminum

Both 5086 aluminum and 5019 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.7 to 20
2.2 to 18
Fatigue Strength, MPa 88 to 180
100 to 160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 160 to 230
170 to 210
Tensile Strength: Ultimate (UTS), MPa 270 to 390
280 to 360
Tensile Strength: Yield (Proof), MPa 110 to 320
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
29
Electrical Conductivity: Equal Weight (Specific), % IACS 100
98

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 28 to 40
29 to 38
Strength to Weight: Bending, points 34 to 44
35 to 42
Thermal Diffusivity, mm2/s 52
52
Thermal Shock Resistance, points 12 to 17
13 to 16

Alloy Composition

Aluminum (Al), % 93 to 96.3
91.5 to 95.3
Chromium (Cr), % 0.050 to 0.25
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.5
Magnesium (Mg), % 3.5 to 4.5
4.5 to 5.6
Manganese (Mn), % 0.2 to 0.7
0.1 to 0.6
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15

Comparable Variants