MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 6014 Aluminum

Both 5086 aluminum and 6014 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.7 to 20
9.1 to 17
Fatigue Strength, MPa 88 to 180
43 to 79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 160 to 230
96 to 150
Tensile Strength: Ultimate (UTS), MPa 270 to 390
160 to 260
Tensile Strength: Yield (Proof), MPa 110 to 320
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
620
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
53
Electrical Conductivity: Equal Weight (Specific), % IACS 100
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.6
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
22
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
46 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28 to 40
16 to 26
Strength to Weight: Bending, points 34 to 44
24 to 33
Thermal Diffusivity, mm2/s 52
83
Thermal Shock Resistance, points 12 to 17
7.0 to 11

Alloy Composition

Aluminum (Al), % 93 to 96.3
97.1 to 99.2
Chromium (Cr), % 0.050 to 0.25
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 0.35
Magnesium (Mg), % 3.5 to 4.5
0.4 to 0.8
Manganese (Mn), % 0.2 to 0.7
0.050 to 0.2
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Titanium (Ti), % 0 to 0.15
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15