MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. ACI-ASTM CF3M Steel

5086 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
150
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
55
Fatigue Strength, MPa 88 to 180
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 270 to 390
520
Tensile Strength: Yield (Proof), MPa 110 to 320
260

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Corrosion, °C 65
420
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
3.8
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
240
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
18
Strength to Weight: Bending, points 34 to 44
18
Thermal Diffusivity, mm2/s 52
4.3
Thermal Shock Resistance, points 12 to 17
12

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
17 to 21
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
59.9 to 72
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0