MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. AWS E33-31

5086 aluminum belongs to the aluminum alloys classification, while AWS E33-31 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.7 to 20
29
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Tensile Strength: Ultimate (UTS), MPa 270 to 390
810

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 590
1330
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
6.0
Embodied Energy, MJ/kg 150
86
Embodied Water, L/kg 1180
260

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
28
Strength to Weight: Bending, points 34 to 44
24
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
31 to 35
Copper (Cu), % 0 to 0.1
0.4 to 0.8
Iron (Fe), % 0 to 0.5
24.7 to 34.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.9
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0