MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. B390.0 Aluminum

Both 5086 aluminum and B390.0 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
76
Elongation at Break, % 1.7 to 20
0.88
Fatigue Strength, MPa 88 to 180
170
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
29
Tensile Strength: Ultimate (UTS), MPa 270 to 390
320
Tensile Strength: Yield (Proof), MPa 110 to 320
250

Thermal Properties

Latent Heat of Fusion, J/g 400
640
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
27
Electrical Conductivity: Equal Weight (Specific), % IACS 100
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.8
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
410
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 28 to 40
32
Strength to Weight: Bending, points 34 to 44
38
Thermal Diffusivity, mm2/s 52
55
Thermal Shock Resistance, points 12 to 17
15

Alloy Composition

Aluminum (Al), % 93 to 96.3
72.7 to 79.6
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 3.5 to 4.5
0.45 to 0.65
Manganese (Mn), % 0.2 to 0.7
0 to 0.5
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.4
16 to 18
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 1.5
Residuals, % 0
0 to 0.2