MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4634 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4634 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4634 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
21
Fatigue Strength, MPa 88 to 180
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 160 to 230
340
Tensile Strength: Ultimate (UTS), MPa 270 to 390
540
Tensile Strength: Yield (Proof), MPa 110 to 320
280

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Corrosion, °C 65
500
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
21
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.8
2.9
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
93
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
20
Strength to Weight: Bending, points 34 to 44
19
Thermal Diffusivity, mm2/s 52
5.8
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Aluminum (Al), % 93 to 96.3
0.2 to 1.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
17.5 to 18.5
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.5
74.9 to 81.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.3 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.4
0.2 to 1.5
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0