MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4852 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4852 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4852 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
4.6
Fatigue Strength, MPa 88 to 180
120
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 270 to 390
490
Tensile Strength: Yield (Proof), MPa 110 to 320
250

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Corrosion, °C 65
620
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
6.9
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
19
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 28 to 40
17
Strength to Weight: Bending, points 34 to 44
18
Thermal Diffusivity, mm2/s 52
3.4
Thermal Shock Resistance, points 12 to 17
11

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0.050 to 0.25
24 to 27
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
29.6 to 40.9
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
33 to 36
Niobium (Nb), % 0
0.8 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0