MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4874 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4874 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4874 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
140
Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.7 to 20
6.7
Fatigue Strength, MPa 88 to 180
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 270 to 390
480
Tensile Strength: Yield (Proof), MPa 110 to 320
360

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Corrosion, °C 65
560
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 590
1400
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.8
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
29
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28 to 40
16
Strength to Weight: Bending, points 34 to 44
16
Thermal Diffusivity, mm2/s 52
3.3
Thermal Shock Resistance, points 12 to 17
11

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0.050 to 0.25
19 to 22
Cobalt (Co), % 0
18.5 to 22
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
23 to 38.9
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0