MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.5701 Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.5701 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.5701 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
130 to 160
Elastic (Young's, Tensile) Modulus, GPa 68
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 270 to 390
430 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.8
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
49

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28 to 40
15 to 46
Strength to Weight: Bending, points 34 to 44
16 to 34
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 12 to 17
13 to 38

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.090 to 0.15
Chromium (Cr), % 0.050 to 0.25
0.4 to 0.7
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
97.2 to 98.7
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0.3 to 0.6
Nickel (Ni), % 0
0.5 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0