MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Grade C-5 Titanium

5086 aluminum belongs to the aluminum alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
310
Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.7 to 20
6.7
Fatigue Strength, MPa 88 to 180
510
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 270 to 390
1000
Tensile Strength: Yield (Proof), MPa 110 to 320
940

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 590
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 24
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.8
38
Embodied Energy, MJ/kg 150
610
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
66
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 28 to 40
63
Strength to Weight: Bending, points 34 to 44
50
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 12 to 17
71

Alloy Composition

Aluminum (Al), % 93 to 96.3
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4