MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Grade N12MV Nickel

5086 aluminum belongs to the aluminum alloys classification, while grade N12MV nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is grade N12MV nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
220
Elongation at Break, % 1.7 to 20
6.8
Fatigue Strength, MPa 88 to 180
130
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 270 to 390
600
Tensile Strength: Yield (Proof), MPa 110 to 320
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
900
Melting Completion (Liquidus), °C 640
1620
Melting Onset (Solidus), °C 590
1570
Specific Heat Capacity, J/kg-K 900
390
Thermal Expansion, µm/m-K 24
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.7
9.2
Embodied Carbon, kg CO2/kg material 8.8
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
34
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 28 to 40
18
Strength to Weight: Bending, points 34 to 44
17
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.050 to 0.25
0 to 1.0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
4.0 to 6.0
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
60.2 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0