MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Nickel 30

5086 aluminum belongs to the aluminum alloys classification, while nickel 30 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is nickel 30.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.7 to 20
34
Fatigue Strength, MPa 88 to 180
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 160 to 230
440
Tensile Strength: Ultimate (UTS), MPa 270 to 390
660
Tensile Strength: Yield (Proof), MPa 110 to 320
270

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 590
1430
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 8.8
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
180
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 28 to 40
22
Strength to Weight: Bending, points 34 to 44
20
Thermal Diffusivity, mm2/s 52
2.7
Thermal Shock Resistance, points 12 to 17
18

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
28 to 31.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.1
1.0 to 2.4
Iron (Fe), % 0 to 0.5
13 to 17
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.030
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
30.2 to 52.2
Niobium (Nb), % 0
0.3 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
1.5 to 4.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0