MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Nickel 908

5086 aluminum belongs to the aluminum alloys classification, while nickel 908 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is nickel 908.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
180
Elongation at Break, % 1.7 to 20
11
Fatigue Strength, MPa 88 to 180
450
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
70
Shear Strength, MPa 160 to 230
800
Tensile Strength: Ultimate (UTS), MPa 270 to 390
1340
Tensile Strength: Yield (Proof), MPa 110 to 320
930

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 190
920
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 590
1380
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 24
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.8
9.3
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
140
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
2340
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 28 to 40
45
Strength to Weight: Bending, points 34 to 44
33
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 12 to 17
61

Alloy Composition

Aluminum (Al), % 93 to 96.3
0.75 to 1.3
Boron (B), % 0
0 to 0.012
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
3.8 to 4.5
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.5
35.6 to 44.6
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Nickel (Ni), % 0
47 to 51
Niobium (Nb), % 0
2.7 to 3.3
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.15
1.2 to 1.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0