MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. C38500 Bronze

5086 aluminum belongs to the aluminum alloys classification, while C38500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is C38500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
100
Elongation at Break, % 1.7 to 20
17
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
37
Shear Strength, MPa 160 to 230
230
Tensile Strength: Ultimate (UTS), MPa 270 to 390
370
Tensile Strength: Yield (Proof), MPa 110 to 320
130

Thermal Properties

Latent Heat of Fusion, J/g 400
160
Maximum Temperature: Mechanical, °C 190
110
Melting Completion (Liquidus), °C 640
890
Melting Onset (Solidus), °C 590
880
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
28
Electrical Conductivity: Equal Weight (Specific), % IACS 100
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.8
2.6
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
48
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
78
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 28 to 40
13
Strength to Weight: Bending, points 34 to 44
14
Thermal Diffusivity, mm2/s 52
40
Thermal Shock Resistance, points 12 to 17
12

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
55 to 59
Iron (Fe), % 0 to 0.5
0 to 0.35
Lead (Pb), % 0
2.5 to 3.5
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
36.7 to 42.5
Residuals, % 0
0 to 0.5