MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. C66100 Bronze

5086 aluminum belongs to the aluminum alloys classification, while C66100 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 1.7 to 20
8.0 to 40
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 160 to 230
280 to 460
Tensile Strength: Ultimate (UTS), MPa 270 to 390
410 to 790
Tensile Strength: Yield (Proof), MPa 110 to 320
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 590
1000
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
34
Thermal Expansion, µm/m-K 24
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.7
8.7
Embodied Carbon, kg CO2/kg material 8.8
2.6
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
60 to 790
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 28 to 40
13 to 25
Strength to Weight: Bending, points 34 to 44
14 to 22
Thermal Diffusivity, mm2/s 52
9.7
Thermal Shock Resistance, points 12 to 17
15 to 29

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
92 to 97
Iron (Fe), % 0 to 0.5
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Silicon (Si), % 0 to 0.4
2.8 to 3.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.5
Residuals, % 0
0 to 0.5