MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. N08028 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
180
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
45
Fatigue Strength, MPa 88 to 180
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 160 to 230
400
Tensile Strength: Ultimate (UTS), MPa 270 to 390
570
Tensile Strength: Yield (Proof), MPa 110 to 320
240

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Corrosion, °C 65
460
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 590
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 8.8
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1180
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
210
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28 to 40
19
Strength to Weight: Bending, points 34 to 44
19
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 12 to 17
12

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.050 to 0.25
26 to 28
Copper (Cu), % 0 to 0.1
0.6 to 1.4
Iron (Fe), % 0 to 0.5
29 to 40.4
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0