MakeItFrom.com
Menu (ESC)

5086-F Aluminum vs. As-cast C82400 Copper

5086-F aluminum belongs to the aluminum alloys classification, while as-cast C82400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086-F aluminum and the bottom bar is as-cast C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
120
Elongation at Break, % 13
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 270
500
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 190
270
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 590
900
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
25
Electrical Conductivity: Equal Weight (Specific), % IACS 100
26

Otherwise Unclassified Properties

Density, g/cm3 2.7
8.8
Embodied Carbon, kg CO2/kg material 8.8
8.9
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
83
Resilience: Unit (Modulus of Resilience), kJ/m3 86
270
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 28
16
Strength to Weight: Bending, points 34
16
Thermal Diffusivity, mm2/s 52
39
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 93 to 96.3
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Cobalt (Co), % 0
0.2 to 0.65
Copper (Cu), % 0 to 0.1
96 to 98.2
Iron (Fe), % 0 to 0.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0 to 0.12
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.5