MakeItFrom.com
Menu (ESC)

5086-H24 Aluminum vs. 8011A-H24 Aluminum

Both 5086-H24 aluminum and 8011A-H24 aluminum are aluminum alloys. Both are furnished in the H24 temper. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086-H24 aluminum and the bottom bar is 8011A-H24 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 88
40
Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 7.8
5.6
Fatigue Strength, MPa 150
60
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 320
140
Tensile Strength: Yield (Proof), MPa 280
110

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
56
Electrical Conductivity: Equal Weight (Specific), % IACS 100
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
7.5
Resilience: Unit (Modulus of Resilience), kJ/m3 590
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 33
15
Strength to Weight: Bending, points 39
22
Thermal Diffusivity, mm2/s 52
86
Thermal Shock Resistance, points 14
6.4

Alloy Composition

Aluminum (Al), % 93 to 96.3
97.5 to 99.1
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0.5 to 1.0
Magnesium (Mg), % 3.5 to 4.5
0 to 0.1
Manganese (Mn), % 0.2 to 0.7
0 to 0.1
Silicon (Si), % 0 to 0.4
0.4 to 0.8
Titanium (Ti), % 0 to 0.15
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0
0 to 0.15