MakeItFrom.com
Menu (ESC)

5086-O Aluminum vs. Annealed SAE-AISI 4340

5086-O aluminum belongs to the aluminum alloys classification, while annealed SAE-AISI 4340 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086-O aluminum and the bottom bar is annealed SAE-AISI 4340.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
220
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 20
22
Fatigue Strength, MPa 120
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 160
430
Tensile Strength: Ultimate (UTS), MPa 270
690
Tensile Strength: Yield (Proof), MPa 110
470

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 130
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.5
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.8
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1180
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 42
140
Resilience: Unit (Modulus of Resilience), kJ/m3 89
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 34
22
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 12
20

Alloy Composition

Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0.050 to 0.25
0.7 to 0.9
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
95.1 to 96.3
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0