MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. AISI 316Ti Stainless Steel

5088 aluminum belongs to the aluminum alloys classification, while AISI 316Ti stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 29
41
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
82
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 310
580
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 9.0
4.0
Embodied Energy, MJ/kg 150
55
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 51
4.0
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.15
16 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
61.3 to 72
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0