MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. EN 1.0491 Steel

5088 aluminum belongs to the aluminum alloys classification, while EN 1.0491 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is EN 1.0491 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 29
26
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 200
280
Tensile Strength: Ultimate (UTS), MPa 310
440
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
47
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 98
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
99
Resilience: Unit (Modulus of Resilience), kJ/m3 170
200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
16
Thermal Diffusivity, mm2/s 51
13
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.015
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.15
0 to 0.35
Copper (Cu), % 0 to 0.25
0 to 0.6
Iron (Fe), % 0.1 to 0.35
96.1 to 99.55
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.45
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.070
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0