MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. EN 1.4057 Stainless Steel

5088 aluminum belongs to the aluminum alloys classification, while EN 1.4057 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is EN 1.4057 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 29
11 to 17
Fatigue Strength, MPa 180
320 to 430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 200
520 to 580
Tensile Strength: Ultimate (UTS), MPa 310
840 to 980
Tensile Strength: Yield (Proof), MPa 150
530 to 790

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 200
850
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 9.0
2.2
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 1180
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
96 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
700 to 1610
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
30 to 35
Strength to Weight: Bending, points 38
26 to 28
Thermal Diffusivity, mm2/s 51
6.7
Thermal Shock Resistance, points 14
30 to 35

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0.12 to 0.22
Chromium (Cr), % 0 to 0.15
15 to 17
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
77.7 to 83.4
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Nickel (Ni), % 0
1.5 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0