MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. EN 1.4736 Stainless Steel

5088 aluminum belongs to the aluminum alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 29
28
Fatigue Strength, MPa 180
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Shear Strength, MPa 200
370
Tensile Strength: Ultimate (UTS), MPa 310
580
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 120
21
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 98
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 9.0
2.4
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1180
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 51
5.6
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
1.7 to 2.1
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.15
17 to 18
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
77 to 81.1
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0