MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. EN 1.8902 Steel

5088 aluminum belongs to the aluminum alloys classification, while EN 1.8902 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is EN 1.8902 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 29
21
Fatigue Strength, MPa 180
290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Shear Strength, MPa 200
380
Tensile Strength: Ultimate (UTS), MPa 310
600
Tensile Strength: Yield (Proof), MPa 150
420

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 98
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 9.0
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 51
12
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 92.4 to 94.8
0 to 0.015
Carbon (C), % 0
0 to 0.22
Chromium (Cr), % 0 to 0.15
0 to 0.35
Copper (Cu), % 0 to 0.25
0 to 0.6
Iron (Fe), % 0.1 to 0.35
95 to 99.05
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.65
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0